棋牌游戏赚钱-津门棋牌馆_百家乐麻将筹码币镭射贴膜_全讯网366806 com (中国)·官方网站

導航
首頁 - 活動 - ISCA明哲論壇:NO.122 Robust Benchmark Satisficing
活動
ISCA明哲論壇:NO.122 Robust Benchmark Satisficing

報告題目:Robust Benchmark Satisficing

報 告 人:Melvyn Sim

報告時間: 2025年09月17日(周三)09:30-11:00

報告地點:明哲樓517

主辦單位:東北財經大學現代供應鏈管理研究院

【報告人簡介】

Dr Melvyn Sim is a Provost's Chair Professor in the Department of Analytics and Operations (DAO) at the National University of Singapore (NUS) Business School. His research interests broadly encompass decision-making and optimisation under uncertainty, with applications in finance, supply chain management, healthcare, and engineered systems. He currently serves as a Department Editor for Manufacturing and Operations Management (MSOM).

【摘要】

We propose a robust benchmark satisficing framework for data-driven decision-making under uncertainty, designed to identify decisions whose expected revenue exceeds that of a comparator by a user-specified surplus—even when the true distribution is unknown. This framework generalizes the robust satisficing model of Long et al. (2023), by accommodating a broader range of benchmark-driven decision criteria as individuals often evaluate their performance relative to others or to reference standards. Built on distributionally robust optimization, our model employs the Wasserstein metric to model distributional ambiguity while ensuring finite-sample performance guarantees. Within this framework, we identify the optimal linear transformation of the uncertain parameters that minimizes conservatism, formulated as a determinant minimization problem with an exponential moment constraint. When estimating the deviation matrix from data, we also introduce a spectral regularization constraint to limit its condition number and prevent its determinant from collapsing to zero. We derive tractable reformulations under various structural assumptions on both the primary and comparator revenue functions, including settings with linear recourse. We validate the framework through two computational studies. In a portfolio optimization problem, our model consistently outperforms an equal weighted benchmark, offering improved risk-return profiles, especially with our proposed deviation matrices. In a multi-product newsvendor setting, where product demands depend on S&P 500 and gold prices, the model ensures revenue superiority over the better-performing benchmark. Together, these results underscore the framework’s flexibility and practical effectiveness in benchmark-driven, uncertain environments.



撰稿:王戈 審核:許建軍 單位:現代供應鏈管理研究院

新 聞
百家乐官网桌布橡胶| 新手百家乐官网指点迷津| 百家乐桌布动物| r百家乐官网娱乐下载| 免费百家乐官网游戏机| 百家乐官网赌博软件下载| 百家乐看图赢| 丰台区| 百家乐赢多少该止赢| 最新百家乐官网双面数字筹码 | 桐庐县| 缅甸百家乐赌| 百家乐官网桌布专业| 大发888 迅雷下载| 澳门百家乐怎样下注| 百家乐官网怎么样玩| 百家乐平注法到656| 百家乐官网皇室百家乐官网| 综合百家乐博彩论坛| 金三角百家乐官网的玩法技巧和规则| 波克棋牌免费下载| 百家乐赌博现金网平台排名| 大赢家| 百家乐真钱斗地主| 真人百家乐官网送钱| 大发888娱乐老虎机| 代理百家乐最多占成| 正品百家乐官网地址| 金盛国际| 百家乐庄最高连开几把| 百家乐辅助分析软件| 百家乐官网博彩开户博彩通| 日博| 幸运水果机电脑版| 百家乐博彩安全吗| 百家乐官网赌场在线娱乐| 百家乐包赢| 百家乐筹码套装100片| 百家乐全透明牌靴| 百佬汇百家乐官网的玩法技巧和规则| 百家乐官网专打和局|