棋牌游戏赚钱-津门棋牌馆_百家乐麻将筹码币镭射贴膜_全讯网366806 com (中国)·官方网站

導航
首頁 - 活動 - ISCA明哲論壇:NO.122 Robust Benchmark Satisficing
活動
ISCA明哲論壇:NO.122 Robust Benchmark Satisficing

報告題目:Robust Benchmark Satisficing

報 告 人:Melvyn Sim

報告時間: 2025年09月17日(周三)09:30-11:00

報告地點:明哲樓517

主辦單位:東北財經大學現代供應鏈管理研究院

【報告人簡介】

Dr Melvyn Sim is a Provost's Chair Professor in the Department of Analytics and Operations (DAO) at the National University of Singapore (NUS) Business School. His research interests broadly encompass decision-making and optimisation under uncertainty, with applications in finance, supply chain management, healthcare, and engineered systems. He currently serves as a Department Editor for Manufacturing and Operations Management (MSOM).

【摘要】

We propose a robust benchmark satisficing framework for data-driven decision-making under uncertainty, designed to identify decisions whose expected revenue exceeds that of a comparator by a user-specified surplus—even when the true distribution is unknown. This framework generalizes the robust satisficing model of Long et al. (2023), by accommodating a broader range of benchmark-driven decision criteria as individuals often evaluate their performance relative to others or to reference standards. Built on distributionally robust optimization, our model employs the Wasserstein metric to model distributional ambiguity while ensuring finite-sample performance guarantees. Within this framework, we identify the optimal linear transformation of the uncertain parameters that minimizes conservatism, formulated as a determinant minimization problem with an exponential moment constraint. When estimating the deviation matrix from data, we also introduce a spectral regularization constraint to limit its condition number and prevent its determinant from collapsing to zero. We derive tractable reformulations under various structural assumptions on both the primary and comparator revenue functions, including settings with linear recourse. We validate the framework through two computational studies. In a portfolio optimization problem, our model consistently outperforms an equal weighted benchmark, offering improved risk-return profiles, especially with our proposed deviation matrices. In a multi-product newsvendor setting, where product demands depend on S&P 500 and gold prices, the model ensures revenue superiority over the better-performing benchmark. Together, these results underscore the framework’s flexibility and practical effectiveness in benchmark-driven, uncertain environments.



撰稿:王戈 審核:許建軍 單位:現代供應鏈管理研究院

新 聞
蓝盾百家乐娱乐场开户注册| 百家乐官网平台注册送彩金| 玩百家乐官网有何技巧| 澳门百家乐官网上下限| 百家乐是否有路子| 大发888真人真钱网址| 百家乐官网破战| 百家乐轮盘一体机厂家| 2402 房号 风水| 百家乐黏土筹码| 做生意摆放什么财神爷| 菲律宾百家乐官网试玩| 亚洲顶级赌场的微博| 百家乐网站是多少| 百家乐官网官网网站| 云鼎百家乐官网注册| 大发888真钱娱乐城下载| 线上百家乐攻略| 真人百家乐官网视频| 澳门百家乐娱乐城注册| 金公主百家乐官网现金网| 大发888网页出纳柜台| 灌云县| 任你博百家乐娱乐城| 百家乐讯特| 皇城百家乐官网娱乐城| 百家乐官网正规站| 百家乐官网象棋赌博| 镇赉县| 抚州市| 乐陵市| 网络百家乐游戏机怎么破解| 赤壁百家乐官网娱乐城| 飞天百家乐官网的玩法技巧和规则 | 百家乐官网娱乐备用网址| 网上百家乐官网真实吗| 北京太阳城国际老年公寓| 去澳门百家乐官网的玩法技巧和规则 | 宾利百家乐现金网| 澳门百家乐下注最低| 百家乐娱乐城返水|